Graph Cuts is a Max-Product Algorithm
نویسندگان
چکیده
The maximum a posteriori (MAP) configuration of binary variable models with submodular graph-structured energy functions can be found efficiently and exactly by graph cuts. Max-product belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexample where MP converges to a suboptimal fixed point (Kulesza & Pereira, 2008). In this work, we show that under a particular scheduling and damping scheme, MP is equivalent to graph cuts, and thus optimal. We explain the apparent contradiction by showing that with proper scheduling and damping, MP always converges to an optimal fixed point. Thus, the canonical counterexample only shows the suboptimality of MP with a particular suboptimal choice of schedule and damping. With proper choices, MP is optimal.
منابع مشابه
Interpreting Graph Cuts as a Max-Product Algorithm
The maximum a posteriori (MAP) configuration of binary variable models with submodular graph-structured energy functions can be found efficiently and exactly by graph cuts. Max-product belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexample where MP converges to a suboptimal fixed point (Kulesza & Pereira, 2008). In this work, we s...
متن کاملA Simple MAX-CUT Algorithm for Planar Graphs
The max-cut problem asks for partitioning the nodes V of a graph G = (V,E) into two sets (one of which might be empty), such that the sum of weights of edges joining nodes in different partitions is maximum. Whereas for general instances the max-cut problem is NPhard, it is polynomially solvable for certain classes of graphs. For planar graphs, there exist several polynomial-time methods determ...
متن کاملGraph Cuts for Image Segmentation
In computer vision, segmentation is the process of partitioning digital image into multiple regions (sets of pixels), according to some homogeneity criterion. The problem of segmentation is a well-studied one in literature and there are a wide variety of approaches that are used. Graph cuts has emerged as a preferred method to solve a class of energy minimization problems such as Image Segmenta...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملSemi-Supervised Learning with Max-Margin Graph Cuts
This paper proposes a novel algorithm for semisupervised learning. This algorithm learns graph cuts that maximize the margin with respect to the labels induced by the harmonic function solution. We motivate the approach, compare it to existing work, and prove a bound on its generalization error. The quality of our solutions is evaluated on a synthetic problem and three UCI ML repository dataset...
متن کامل